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ABSTRACT

The effect of processing variables on the micro-
structural development and superplasticity of aluminum
alloy 2090, a high strength Al-Cu-Li-Zr alloy of reduced
density in comparison to other Al-based materials, was
investigated. Following previous research, warm rolling
was conducted to strains, up to 3.36 and it was found that
increasing the strain to values greater than 2.6 offered
no improvement in subsequent superplastic response.
Increased rolling speeds likewise did ncot enhance
ductibility above a maximum value of approximately 240
percent. Microstructural examination revealed a refined,
homogeneous microstructure consisting of T, particles
distributed in an alloy matrix. These particles reside

at triple junctions in a recovered microstructure.
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I. INTRODUCTION

In recent years significant advances have been made
in new manufacturing techniques by wutilizing improved
capabilities of some new materials. Superplasticity 1is
one notable quality of some materials, which facilitates
fabrication of complex part geometries in a single
forming operation. Superplastic forming is an emerging
technology which has the potential of offering improved
performance through reduced weight, increased
reliability, reduced number of parts, and cost savings in
certain structural applications.

The ability of some materials to sustain large
tensile elongations without localized necking is known as
superplasticity. Generally, materials which exhibit
elongations of 200 percent or greater are considered to
be superplastic. However, certain materials are capable
of experiencing 2000~3000 percent elongations under
specific temperature and controlled strain rate [Ref. 1].

Superplastic forming 1is based on superplastic
ductilities, attainable in certain materials through
controlled processing. The materials with superplastic
forming capibility, particularly aluminum-based alloys,

have attracted the attention of the aerospace industry




over the past few years [Ref. 2]. The automotive

industry may also be able to utilize such materials,

although the presently available slow forming rates

preclude use 1in this field. Thus, the aerospace
industries have played the most significant role 1in

applying new materials for manufacturing of structural

components. By eliminating fasteners, superplastic

forming improves fatigue and corrosion performance, and

the availability of such materials is vital for aerospace

structural applications.

Aluminum based alloys have been in general use in
aerospace applications since the 1930’s. Over time, the
aluminum-lithium alloys have become of interest due to
their reduced density and increased modulus of elasticity
relative to pure aluminum. The aluminum alloy 2090
(Al-2.56 Wt% Cu-2.03 Wt% Li-0.12 Wt% Zr) was developed by
Alcoa and is seven to eight percent less dense and has
Young’s modulus ten percent higher than that of 7075
aluminum alloy [Ref. 3].

Beryllium is another element which, when utilized as
an alloying element with aluminum, provides similar
results as 1lithium. However, it is not widely used
because of certain severe draw backs, specifically
the need of sophisticated manufacturing techniques such
as powder metallurgy, and also the toxicity of BeO, the

oxide of beryllium [Ref. 4].




Although Al-Li alloys exhibit poor fatigue and
fracture resistance, this can be overcome by addition of
Cu. The concept of adding copper to improve fatigue and
fracture characteristics was applied by Alcoa in
developing and registering the 2090 composition in the
early 80’s.

This present research was undertaken to investigate
the superplastic behavior of Al1-2090 alloy in conjunction
with a thermomechanical process (TMP) developed at the
Naval Postgraduate School (NPS). Basically, this TMP was
devised to investigate superplastic response of Al-Mg
alloys and later was extended to Al-Mg-Li alloys. The
purpose of using this TMP was to promote microstructural
changes via the <continuous recrystalization (CRX)
mechanism in a manner similar to that utilized with Al-Mg
and Al-Mg-Li-Zr alloys previously studied at NPS
[Ref. 5]. The process involves solution treatment, i.e.
initial homogenization, hot working and then warm rolling
to a comparatively large accumulated rolling strain. In
this process, warm rolling creates high density of
dislocations, which in turn promotes CRX through static
recovery while reheating between the rolling passes. The
process also utilizes the precipitation of intermetallic
phases such as T,, in 2090 or - (Alg Mgg) in Al-Mg-X

alloys [Ref. 5].




Previous work conducted at NPS on Al-2090 has
attempted to adapt the work on Al-Mg alloys to Al-2090.
Spiropoulos [Ref. 3] worked on attaining uniform
distribution of T, precipitates by combination of cold
work and aging treatments, assuming that the T, would
facilitate CRX during warm rolling. The results obtained
were not encouraging and the process failed to create
recrystallized conditions. Regis [Ref. 6] and Groh
[Ref. 7] continued their work to obtain CRX through the
same TMP with some minor changes. Groh utilized a true
rolling strain of 2.50 and obtained a microstructure
consisting predominately of T, precipitates at the
conclusion of warm rolling. The details of the
precipitation sequence are explained in Ref. 7. It was
suggested by Groh that higher accumulated rolling strain
may result in a finer microstructure, and CRX via static
recovery, during processing. To investigate this, the
rolling strain was increased beyond 2.50 in this study.
The effect of higher rolling speed was also studied and
comparison made by rolling the material at two different
rolling speeds. To improve the initial homogenization of
structure, the period of solution treatment was also
increased and the cold work previously incorporated was

deleted from the TMP.




II. BACKGROUND

A. HISTORY OF DEVELOPMENT OF ALUMINUM ALLOY 2090
The development of new materials for aerospace use

started during the World War I, when the manufacturing of
aircraft structures began shifting from wood and fabric
to metal frames. By 1930, with the standardization of
stressed wing skin design, the use of metals,
particularly aluminum, had become firmly established in
this industry [Ref. 8]. The need for weight saving and
increasing load carrying capabilities brought about the
use of other elements in alloying with aluminum.
Although Al-Li alloys have been developed intermittently
since the 1920’s, it was in 1957 when such material,
designated as Al-2020, was first used in aircraft
applications [Ref. 8]. As every one weight percent
addition of lithium reduces the density of aluminum by
three percent and increases the alloy modulus of
elasticity by six percent, the Al-Li alloys showed a
great potential for structural applications [Ref. 9]. 1In
critical applications, precise control of surface
appearance, the absence of internal defects, uniform cast
grain size and low impurity contents are important

requirements of any material and are readily controlled
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in Al-Li alloys [Ref. 10]. However, fracture toughness
of Al-Li alloys is known to be poor and while Al-2020
performed satisfactorily in service, it would not meet
current requirements for fracture toughness at strengths
attainable via heat treatment, resulting in limiting the
use of Al-Li alloys in aerospace applications.

The emergence of composites in the 70’s momentarily
diverted the attendion of the research community away
from aluminum alloys [Ref. 9]. Although composites
offered very favorable gqualities, they also required
large expenditure on new, compatible alircraft
manufacturing facilities. In recognition of the
competition from composites, the aluminum-lithium alloys
again became the focal point of research. In 1981, Alcoa
launched "Alithalite", a project to develop low density
replacements for several commercial alloys. To improve
fracture toughness and resistance to stress corrosion
cracking, copper and zirconium were added to Al-Li
alloys. A low percentage of zirconium in Al-Li alloy
increases the recrystallization temperature and also
results in enhancing the superplastic properties by

acting as grain refiner [Ref. 3]. Thus Alcoa developed

4




an alloy containing Al-2.7 Wt% Cu-2.2 Wt% Li-0.12 Wt% Zr,
which was registered as Al-2090 in 1984 [Ref. 9]. The
improved fatigue resistance, increased elastic modulus
and reduced density combine to make Al-2090 a strong

candidate material for many aerospace applications.

B. SUPERPLASTICITY AND SUPERPLASTIC FORMING
1. Process
The phenomenon of extended elongation without
localized necking is known as superplasticity. Research
work in this area was initially undertaken by Soviet
scientists [Ref. 11]. Although they did not use the term

"superplasticity", their work documented considerable

elongations in a number of materials. Underwood [Ref. 117,

wrote the first English language review of
superplasticity in 1962 and generated the interest of the
western world in this field [Ref. 12].

In the earliest work on superplasticity, this
phenomenon was recognized as an elevated temperature
process. In 1946, Kayushnikow related increased
plasticity in steels to phase changes above 700 C.
Gueussier and Castro |[Ref 11] determined the hot
ductilities of ferrous metals in torsion and attributed
this to continuous recrystallization during deformation.

It was also established by 1970 that a fine grain

structure is one of the controlling factors in achieving




appreciable superplasticity [Ref. 2]. Further research
suggested that uniform distribution of second phase
precipitates and mobile high angle grain boundaries are
essential, along with fine grain size, for promoting
superplastic ductility (Ref. 13, 14]. A uniformly
distributed second phase 1s necessary to retard grain
growth at elevated temperatures and the high angle
boundaries facilitate the sliding of grain boundaries
and enhance the superplastic properties [Ref. 13].

As mentioned earlier, Underwood’s review of
superplasticity in 1962 acted as catalyst for starting
extensive research work in this field. A number of
methods were proposed to achieve the above mentioned
microstructure. With respect to aluminum, the most
commonly adopted methods are that proposed by researchers
at Rockwell [Ref. 15, 16] and that developed at Alcan for
Supral (Al-Cu-Zr) alloys. The details of the Rockwell
thermomechanical processing are given in Ref. 16. 1In the
case of the Supral alloys, continuous recrystallization
is utilized to obtain fine microstructure with high angle
grain boundries [Ref. 17]. The continuous
recrystallization, during heating after deformation

processing, initially results in subgrain structure by




rearrangement of dislocations produced by straining
during rolling. This structure then evolves into a fine
grain microstructure with relatively high angle
boundaries facilitating subsequent superplastic straining
[Ref. 17, 18].

A thermomechanical process has been developed at the
Naval Postgraduate School for acquiring requisite micro
structural characteristics for superplastic forming.
This method is based on introduction of distocations by
rolling at a sufficient temperature that recovery
followed by continuous recrystallization occurs while
annealing between the rolling passes, resulting in a
refined grain structure after enough <cycles of
deformation and annealing [Ref. 19, 20]. The method has
been successfully used at NPS to promote superplasticity
in Al-Mg-X alloys at moderate temperatures. This
technique has been extended to Al~Mg-Li-X alloys by a
number of researchers at NPS as well as to 2090 alloy.

2. Strain Rate Sensitivity Coefficient

The flow stress depends upon strain rate,
temperature and the microstructure of the material. The
relation between flow stress ¢ and strain rate £ at

constant strain and temperature is

—~
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where C is a material constant and m is known as strain
rate sensitivity coefficient [Ref. 21). The value of m
is calculated from the experimental data through the
equation:

d (In ~f)
d (1n £)

The value of m is highly influenced by strain rate,
temperature and the microstructure of the material.
Typical values of m for superplastic material range
from 0.3 to 0.9. Higher values of m help in avoiding
premature fracture during elongation and hence are a
direct measure of resistance to local plastic instability
in a material. However, material even having m>0.3
sometimes may fracture prematurely due to tensile failure
of grain boundaries due, for example, to impurities in
the material [Ref. 1].

Along with temperature above about 0.5Tm and low strain
rate, a fine microstructure is essential to large values of
this coefficient. At low temperatures, the grain boundaries
of fine grains act as barriers to dislocation motion where-
as at elevated temperatures, the large area of the grain
boundaries helps in superplastic flow by facilitating mass

transport of atoms along the boundaries or by providing

10




a short distance across the grains [Ref. 22). Another

notable fact is that the required refined grain structure
can only be achieved in many alloys by introduction of
fine particles of a dispersoid, such as Al;Zr in Al-2090.
The presence of such fine particles creates resistance to
coarsening of grains at higher temperatures, maintaining

a stable value of m over a range of temperature.

C. OBJECTIVE OF THIS RESEARCH

A fine grain size with high angle grain boundaries is
generally considered to facilitate superplasticity
[Ref. 23]. To obtain this type of microstructure through
continuous recrystallization (CRX), the thermomechanical
process (TMP) developed at NPS has successfully been
employed on Al-Mg alloys. The requirements have been
attained in work on Al-Mg alloys by a thermomechanical
process concluding with isothermal rolling at temperature
near 300 C. Such a temperature is below the solvus for
Mg and thus precipitation of the intermetallic £ phase
occurs concurrently with intervals of straining and
recovery. Continuous recrystallization may Dbe
facilitated during such processing by controlling the
strain per pass, the reheating interval and the total
strain such that the precipitating intermetallic ¢ phase

stabilizes recovering dislocation arrays. If

dislocations can continue to recover to such

1




sub-boundaries, the boundaries may be caused to increase
progressively in misorientations and convert to
boundaries capable of sustaining superplastic deformation
mechanisms.

Studies regarding application of this concept to
Al-2090 began with Spiropoulos [Ref. 3] and most recently
concluded with Groh ([Ref. 7]. The previous work has
demonstrated that T, phase may play the same role as ©
phase in Al-Mg alloys. The microstructure obtained at
the end of processing by Groh consisted of fine subgrains
stabilized by T,, i.e., insufficient boundary
misorientation was achieved [Ref 7].

One conclusion of Groh’s work was that increased
rolling strain in conjunction with controlled reheating
may facilitate formation of more highly misorientate
boundaries and thus enhance superplasticity beyond the
300% elongation attained. The objective of this research
work is to investigate this hypothesis by incorporating

higher total rolling strain during the TMP.




ITI. EXPERIMENTAL PROCEDURE

A. MATERIAL

The composition of aluminum alloy (A1-2090) studied

in this research is given in Table 1. The material was

provided in the form of rolled plate 5l1lcm long, 3lcm wide

and 4.2cm thick heat treated to a T8A41 tempered

condition.
TABLE 1I.
COMPOSITION OF AL-2090 (WT. PCT.)
) ‘ '
. ;
| cu | Li | zr Al |
L l ‘
; | ; | |
. A1-2090 _ 2.4-3.0 1.9~2.6 0.08 Bal
; | | |
- This alloy  2.56 | 2.03 0.12 Bal 1
B. PROCESSING
The thermomechanical processing (TMP) schemes

employed in this study are illustrated in Figures 1 and

2. The details of the processing are given below.

1. Solution Treatment and Forqing

The solution treatment process was intended to

produce a uniform solid solution by dissolving the

soluble components in the alloy.

13
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blocks 42mm X 43mm X 51lmm previously sectioned from the
material were held at 540 C for 12 hours, well above the
solvi for T, and T, phases. Two blocks were forged in
the short transverse direction to 25.4mm thickness, after
eight hours at 540°C, and were again heated for four
hours at 540 C . The forging was carried out in a
Baldwin-Tate-Emery Universal testing machine between two
platens heated to 480 C (maximum allowable temperature of
the platen material). The third billet was held at
540 C for 12 hours and was not forged. In all three
cases, the billets were cold-water quenched at the end of
the total 12 hours solution treating. One of the forged
billets was sectioned into two pieces to facilitate
rolling at the Naval Postgraduate School, whereas the
other two were left as single pieces.

2. Warm Rolling

This critical step in the TMP is performed under
a combination of parameters to convert the microstructure
to one capable of supporting superplasticity. To promote
CRX, a sequence of rolling and annealing treatments are
conducted, so that the recovery of dislocations, produced
during rolling, will ultimately form refined grains with

high-angle boundaries.
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TABLE II.

ROLLING SCHEDULE

ROLL DIA = 305 mm ROLL DIA = 113 mm
BILLET - 1 BILLET - 2 BILLET - 3
Rolling | Thickness ‘Rolling Thickness Rolling Thickness
Pass (mm) Pass (mm) Pass (mm)
0 % 42.0
1 36.8 0 25.4
2 % 31.8 1 22.9
3 26.7 0 25.4 2 20.3
i 4 21.6 1 21.6 3 17.8
5 16.5 2 16.5 4 15.2
6 i 11.4 ' 3 11.4 5 12.7
7 | 8.3 4 8.3 6 9.5
.8 5.1 5 5.1 7 6.2
i 9 4.1 6 4.1 8 4.3
10 j 3.0 7 3.0 9 2.5
| 11 1.9 8 1.92 10 1.98
|
g_ 12 1.45 :' B




Warm rolling was conducted at a temperature of
300cC utilizing two different rolling speeds. The
details of rolling schemes and the schedule of rolling
reductions are summarized in Table II. The material was
preheated to the rolling temperature of 300 ‘c for 30
minutes and subsequently 30 minute reheating intervals
were utilized between rolling passes. A true strain of
3.36 in unforged and 2.60 in forged material was obtained
at the end of warm rolling. It is to be noted that a
true strain of 2.60 was obtained in two cases at two
different rolling speeds as indicated in Table 1II. In
all cases the reduction per rolling pass was reduced in
final passes to avoid cracking of the material. A steel
plate 1" X 6" X 12" in size was used to facilitate
isothermal conditions. At the end of rolling, che rolled
sample thicknesses of 1.92mm and 1.47mm, corresponding to
true strain of 2.60 and 3.36, respectively, were
achieved. Figure 3 provides a schematic illustration of

the three processing conditions.

C. TENSILE TESTING

Upon completion of warm rolling, the material was
machined into tensile test samples in accordance with the
design shown in Figure 4. The samples were prepared

keeping the tensile test axis parallel to the prior TMP
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Figure 3. Plate To Test Specimen Geometry
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TINSILE SAMPLE GLEOMETRY

.— +go00
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Note: All dimensions aie o inches.

Figure 4. Tensile Test Sample Configuration And Dimensions.

The Effective Gage Lenth Is 0.50 Inches And The
Thickness Is Function Of Final Rolling Strain.
The Specimen Was Machined in Parallel To The
Rolling Direction.
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rolling direction. A set of the samples previously
rolled to a strain of 3.36 was annealed at 540°C for ten
minutes to provide a comparison to the tensile test
results with as-rolled material.

Tensile testing on material from each of the TMP
process variants were performed at 300 c , 350°C ,
370 oC, 400 °C, 430 oC, and 500 'C at crosshead speeds
corresponding to an engineering strain rate ranging from
6.67 X 1072 s™! to 6.67 X 1072 s™! on an Instron model
1102 testing machine, utilizing a Marshal single-zone
furnace to heat the specimens to test temperature. The
specimens were held in the furnace for approximately 40
minutes prior to the beginning of each tensile test to
allow for the temperature to equilibrate. 1In addition to
the furnace controller, the test temperature was
monitored by two thermocouples placed along the length of
the test specimen. Load versus time data were
autographically recorded and converted to true stress
versus true strain, compensating for decrease in true

strain rate with increasing strain.

D. METALILOGRAPHY

The optical microscopy was conducted on the material
prior to and after warm rolling and on selected specimens
after the tensile testing. The samples annealed at 540°C
for ten minutes and tested at various temperatures were

21
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also observed through optical microscopy. The samples
were cold mounted and mechanically polished by using 6,
3, and 1 micron diamond paste in succession. Final
polishing was done using cerium oxide paste, diluted with
distilled water. At this point, the samples were etched
in Kellers reagent for 20 seconds followed by immersion
in concentrated nitric acid (HNO;) for five seconds. The
samples were again etched in Kellers solution for 20
seconds followed by dipping in concentrated HNO; for six
to seven seconds. The samples were then rinsed in
ethanol and dried ([Ref. 24]. Metallography was then
conducted by using a Zeiss ICM 405 optical microscope

equipped with a 35mm camera.
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IV. RESULTS AND DISCUSSION

A. MICROSTRUCTURAL CONDITION PRIOR TO ROLLING

Optical microscopy was conducted on material which
had been solution treated for eight hours at 540 e,
forged to 25.4 mm and again annealed at 540 'C for four
hours. This represents the condition prior to rolling.
The microstructure consists of a mixture of elongated
grains of large aspect ratio and more nearly egquiaxed
grains as shown in the micrograph of Figure 5. The
equilibrium phases T; and T,, with solvi temperatures of
520 °C and 460 °C respectively, are not evident in this
microstructure as a result of solution treatment. Some
small uniformly distributed Al;Zr particles as well as
some slightly larger dark etching particles on grain
boundaries are visible in this micrograph. These are
likely to be inclusions. The elongation of grains in
Figure 5 indicates the original rolling direction of the
billet. This suggests that the hot forging has not
introduced sufficient strain energy to lead to nucleation
and ¢rowth of new grains through the structure. Instead
some new grains have formed while the boundaries of

others have been pinned by second phase particles.
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Figure 5.

Long Transverse Optical Micrograph Of
Alloy 2090 Following Solution Treatment
At 540 C For 8 Hours, Forged To 25.4mm
At 480 C, Annealed For 4 Hours At 540°C
And Quenched In Cold Water.




B. MICROSTRUCTURAL CONDITION AFTER ROLLING

Optical micrographs of Al1-2090 following warm rolling
at 300°C to a true strain of 3.36, 2.60 at higher rolling
speed and to 2.60 at lower rolling speed are shown in
Figures 6, 7, and 8, respectively. In all three cases,
warm rolling at 300 “Cc with reheating intervals of 30
minutes between rolling passes has resulted in a fine
second phase precipitate distributed in the
microstructure. The higher rolling strain or rolling
speed has not made appreciable difference in
microstructure at this level of magnification. The TMP
used has produced uniform microstructure with an
intermetallic phase, likely T, being the predominate
precipitate. Groh [Ref. 7] has shown through TEM that,
at the end of warm rolling, the precipitated T, resides
at triple junctions in the microstructure. Also
deformation results in a diminished apparent volume
fraction of T, (Al,-Cu-Li), while the amount of T, (Alg-
Cu-Li,;) precipitate appears to increase. In micrographs
of rolled surface (Figures 6a, 7a, and 8a) unsoluble

inclusions are also evident.
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(a)

(b)

Figure 6.

Rolled Surface Section (a) And Long
Transverse Section (b) Optical Micro-
graphs Of Alloy 2090 Following Rolling
At 300 °C To A True Strain Of 3.36 With
30 Minutes Reheating Intervals Between
Passes.
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Rolled Surface Section (a) And Long 4
Transverse Section (b) Optical Micrographs
Ot Alloy 2090 Following Rolling At 300 C
To A True Strain Of 2.60 With 30 Minutes
Reheating Intervals RBetween Passes At
lower Rolling Speeds.




Figure 9.

Long Tranverse Section Optical Micro-
graph Of Alloy 2090 Specimen Following
Rolling At 300 °C To A True Strain Of
3.36 With 30 Minutes Reheating
Intervals Between Passes And Annealing
At 540 C For 10 Minutes.
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The micrograph of Figure 9 shows the microstructure
of material annealed at 540 C for ten minutes, at the end
of warm rolling to a true strain of 3.36. This also
represents the base line condition of the material
comparable to that of Figure 5. A slight difference in
the presence of phases is due to relatively shorter
annealing period, in this case. Here, in addition to
insoluble inclusions and Al,Zr particles (also insoluble
at 540°C), undissolved precipitates, most likely T, due
to its relatively higher solvous temperature and the

short heating interval, can also be seen.

C. MECHANICAL PROPERTIES

Mechanical properties of Al-2090 were examined
considering final rolling strain and rolling speed as
primary variables. This was accomplished by testing of
the processed material over a range of temperatures
and strain rates. Due to the emergence of similar
microstructure at the end of TMP, in all cases (i.e., in
material rolled to 3.36 true strain, 2.60 true strain at
higher rolling speed and 2.60 true strain at lower
rolling speed), the elogations obtained were of the same

order. Moderate ductilities were obtained between 370 C

and 430 C and strain rates of 6.67 X 10~4 s™1 and
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6.67 X 1073 S'l, irrespective of final rolling strain or
the rolling speed. The results of the mechanical testing
are summarized graphically in Figures 10-15 and in
tabulated form in Table A-1 of Appendix A.

It can be seen from these results that the
ductilities were relatively low at lower temperatures and
again decreased at temperatures above 430 oC. As
mentioned in Section A of this chapter, a reasonably
refined microstructure was obtained at the end of TMP
(Figures 6, 7, and 8). This microstructure would
suggest lower ductilities at relatively low temperatures
due to the fact that smaller grains are more resistant to
flow at lower temperatures [Ref. 22]. The drop in
elongations at higher temperatures, then, is 1likely due
to the coarsening of microstructure.

The peak ductility of 240 percen*t was achieved in a
material rolled to true strain of 3.36 and subsequently
tested in tension at a strain rate of 6.67 X 10~ 4 s71 at
430 cC. In a material rolled to true strain of 2.60 at
higher rolling speed, the highest value of elongation,
215 percent, was obtained in testing at a strain rate of
6.67 X 1073 s~1 at 400 c. similarly the value of 226
percent elongation was attained in material rolled to
2.60 true strain at lower rolling speed and then tested
at 370 cC. These values are so close that a clear dis-

tinction of variable parameters can not be established.
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During the tensile tests, the flow stress decreases
with decreasing strain rates as can be seen from Figures
11, 13, and 15. Although flow stress values at test
temperatures above 430°C are very low in all cases at all
strain rates, the value of strain rate sensitivity
coefficient obtained was not of high enough magnitude.
The highest value of m obtained was of the order of ~ 0.3
at 430 °C in material rolled to true strain of 3.36
(Figure 16). The value of this coefficient dropped at
temperatures above and below 430°C in this case. This is
consistant with the results graphically represented in
Figure 10 and tabulated in Table A-1 of Appendix A.

Normally, the value of m increases with rising
temperature. However, m 1is also a function of micro-
structure of the material, usually attaining values of
0.5 in fined grained, recrystallized microstructures when
high-angle boundaries are present. Hence the lower
values of m above 430°C is attributed to coaser grains
and the failure to attain higher angle boundaries in
processing.

The fact that the coarser grain structure is less
ductile (lower m value) than fine grain structure at
elevated temperatures can be observed in the data of
Figures 17 and 18. The tensile tests conducted on
specimens annealed at 540 C for 10 minutes, prior to
tension testing resulted in much lower ductilities as
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compared to as rolled specimens. The reason for this was
the coarser grain structure of annealed material. The
microstructure of as rolled material tested at 500 C also
resulted in coarser grains, resulting in ductility of the
same order of annealed material.

Irmportant outcome of these results is that the TMP
utilized in this research work failed to achieve
boundaries of sufficient misorientation and ability to
resist grain growth at higher test temperatures. The
cavitation at temperatures above 400 °c was also not
suppressed due to which premature fracture of material
resulted, consequently producing low ductilities.

Finally, Figures 17 and 18 emphasize that the
microstructures developed by this TMP do result 1in
enhancement of ductility in comparison to that of an
initially annealed, course-grained condition. Thus, as
also concluded by Groh [Ref. 7], the attainment of
boundaries of sufficient misorientation in conjunction
with resistance to coarsening should result in further
enhancement of ductility. However, increased rolling
strain with this particular material has not as yet

produced the desired result.
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D. EFFECT OF DEFORMATION ON MICROSTRUCTURE

As mentioned in the previous section, the highest
value of elongation was obtained in material rolled to
true strain of 3.36, tested at 400°C at a strain rate of
6.67 X 1074 s71. The microstructure present in this
sample is shown in Figure 19. The micrograph of Figure
19b represents tne effect of heating only of the as-
rolled condition.

It can be seen in Figure 19a that the microstructure
of deformed section, i.e. the gage section, has coarsed
somewhat and predominent T, phase is clearly evident in
the micrograph. The relatively low temperature of 400 C
has not resulted in extensive microstructural coarsening
and the material has shown good elongation.

Microscopy on a sample tested at 500 C revealed
totally different microstructure, as shown in Figure 20.
Large grains can be seen in grip section (Figure 20b)
whereas highly elongated grains along with some equiaxed
smaller grains are evident, in the deformed gage section
(Figure 20a). The presence of smaller, equiaxed grains
suggest recrystallization and growth upon straining at
500 C. Also noteworthy is the presence of cavitation on
the grain boundaries, and this likely 1is the cause of
premature failure at elevated temperatures during

tensile tests.
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Long Tranverse Gage Section (a) And Grip
Section (b) Optical Micrographs Of Alloy 2090
Following Tensile Test gond¥cted At 400 C At
Strain Rate of 6.67X10°* S~ *. The Material Was
Rolled At 300 °C. To A True Strain of 3.36 With
30 Minutes Reheating Intervals Between Passes.
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To provide a basis for comparison, material warm
rolled to true strain of 3.36 was annealed at 540 C for
ten minutes prior to conducting the subsequent tensile
tests at various temperatures. This reheating produced
much coarser initial structure as shown previously in
Figure 9. The micrographs of Figure 21 represents the
gage and grip sections, respectively, of this material
following tension testing at 400 C and a strain rate of
6.67 X 10”% s™1, Here, precipitation during heating and
straining is evident and elongation of grains in the gage
section 1is also apparent. The microstructure 1is
homogeneous with no sign of cavitation. Much reduced
ductilities under these conditions are the direct result
of the coarse grain structure; the grain elongation
certainly reflects dislocation deformation and 1lower
ductility. Thus, refined microstructures consisting only
of recovered subgrains rather than recrystallized grains
are sufficient to enhance ductility, although grains with
high-angle boundaries are necessary for extensive
superplasticity.

Figure 22 represents the gage and grip section,
respectively, of the same annealed material but now
tested at SOOOC. These micrographs also reflect the much
coarser, initial microstructure, but now along with
extensive cavitation in the necking region. The fracture

surface of this sample is seen in profile at right in
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Figure 20.

Long Tranverse Gage Section (a) And Grip
Section (b) Optical Micrographs Of Alloy 2090
Following Tensile Test Conducted At 500 C At
Strain Rate of 6.67X10"%s™!. The Material Was
Rolled At 300 °C. To A True Strain of 3.36 With
30 Minutes Reheating Intervals Between Passes.
The Cavitation Along The Boundaries Is Very
Clear AT 500 C.
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Section (b) Optical Micrographs Of Alloy 2090
Following Tensile Test Eond¥cted At 400°C At
Strain Rate of 6.67X10 " S “e-4/s. The
Material Was Rolled At 300 C. To A True Strain
of 3.36 With 30 Minutes Reheating Intervals
Between Passes. The Specimen Was Annealed

At 540 C For 10 Minutes Before Conducting
Tensile Tests.




Figure 22a, once again clearly indicates the premature
failure of material on the grain boundaries. It is
evident from Figure 20a and 22a that alloy 2090 is very
prone to grain boundary separation and cavitation at
elevated temperatures. This may be due to various

factors 1including, the presence of impurities such as

Fe, Na and K.
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E. SUMMARY

The sequence of precipitation and development of
microstructure in aluminum alloy 2090 is not fully
understood as yet. The T, phase may play a similar role
to the B phase in Al-Mg-X alloys in achieving
superplastic response in Al-2090. In this research
initial homogenization, reasonably even distribution of
precipitates and finally a fine microstructure was
obtained for all TMP conditions. Despite this the
ductilities obtained were considered much below the
anticipated values. 1In fact, the strain rate sensitivity
coefficients were ~ 0.3 at best and thus the reduced
ductilities were consistant with this aspect of the
material. This likely reflects incomplete conversion of
the microstructure to a fine grained structure with high
angle grain boundaries.

It was previously suggested [Ref. 7] that higher
accumulated rolling strain, producing a higher density of
dislocations, will promote superplasticity by creating
even finer microstructure through continuous
recrystallization. However, no improvement was observed
either by increasing the overall rolling strain beyond
true strain of 2.50 or the rolling speed. The

micrographs of Figures 20 and 22 also suggested that at
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higher test temperatures, the grain boundaries began to
fail. Thus, processing failed to suppress the creation
of cavitation at elevated temperatures. This phenomenon
of excessive cavitation, particularly in the necking
region, may have been the result of excessive impurity
contents. The material was also unable to maintain the
refined state of microstructure and the spontaneous grain
growth at higher test temperatures, resulted in much

reduced elongations.




V. CONCIUSION

The conclusions of this study are drawn as follows:

(a) Warm rolling resulted in moderate superplastic
response.

(b) Refined microstructure was obtained following
TMP. However, TEM studies previously conducted, showed
that such processing results 1in 1low angle grain
boundaries which normally does not support extensive
superplasticity.

(c) Optizal micrograrhy also revealed that
development of coarser structure during the tests at
elevated temperatures, became the cause of reduced or low
elongations.

(d) Microstructure obtained at the end of TMP failed
to supress cavitation at elevated temperatures.

(e) In comparison with previous thesis work done at
NPS, increased rolling strain beyond 2.50 and higher

rolling speed did not improve the ductilities.
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VI. RECOMMENDATIONS

The following recommendations are made for following-

up this study:

(a) Attain rolling strain of 2.50 through a rolling
schedule in which the rolling speed is to be increased on
every successive pass (as recommended by McQueen in
Ref. 25). This type of rolling may provide finer
microstructure with high angle grain boundaries.

(b) Obtain material with lowest acceptable impurity

conients.




APPENDIX A

TABLE A-1

SUMMARY OF DUCTILITY DATA

Processing Condition Elongation (PCT.)
Strain Rate Rolling | Rolling Test Temperature (C°)
Strain Speed
300 | 350 | 370 | 400 | 430 | 500

6.67X1072s571| 3.36 High 36 | 56| 66| 80| 80! 60
6.67X1073s"1| 3.36 High 80| 90 | 155 | 206 | 125 | 95
!6.67X‘0_4S_1| 3.36 High | 126 | 145 | 175 | 235 | 240 | s0
i6.67x1o'55‘17 3.36 High | 136 | 150 | 106 | 115 | 156 | 20
!6.67X10'4s_1* 3.36 High 16 | 17| 22| 26| 26| 56
56.67x1o'2s‘1 2.60 High | 51| 55| 80| 60| 75| 80|
5.67X1035"1| 2.60 High 82 | 105 | 175 | 215 | 155 | 95
l6.67x107%s71] 2.60 High | 146 | 161 | 156 | 170 | 171 | 64
6.67x10-55"1 2.60 High | 100 | 131 | 106 | 141 ] 176 4oi
16.67X107%s™1] 2.60 Low 45| 48| s1| se| 72| 8z
6.67X1073s71| 2.60 Low 62| 66| 161 | 205 | 151 | 122
6.67X10"%s71| 2.60 Low 91| 184 | 226 | 196 | 98| 61
6.67X10"°s” 1] 2.60 Low 146 | 118 | 121 | 136 | 128] 36

* The samples were annealed at 540°C for ten minutes
before conducting tensile tests.
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APPENDIX B

TENSILE TEST DATA
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Figure B-1. Ductility vs. Strain Rate For Various TMP
Schedules Shown In The Legend. The Material
Was Rolled In The Original Plate Longitudinal
Direction With True Strain Of 3.36.
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Figure B-2. Ductility vs. Strain Rate For Various TMP
Schedules Shown In The Legend. The Material
Was Rolled In The Original Plate Longitudinal
Direction With True Strain Of 2.60 At Higher
Rolling Speed
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True Stress vs. True Strain As Function Of
Test Teggerggure At A strain Rate of

6.67X10 S ~. The Material Was Rolled To A
Rolling Strain Of 3.36 At 300 C With 30
Minutes Reheating Interval between The Rolling
Passes, In The Direction Parallel To The
Original Plate Longitudinal Direction. The
Specimens Were Annealed At 540 'C For 10
Minutes Prior To Testing
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Figure B-7.

True Strain As Function Of
Test Temgeraiure At A strain Rate of

6.67X10 The Material Was Rolled To A
Rolling Strain Of 3.36 At 300°C With 30
Minutes Reheating Interval between The Rolling
Passes, In The Direction Parallel To The
Original Plate Longitudinal Direction.

True Stress vs.
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Figure B-8. True Stress vs. True Strain As Function Of
Test Temgeraiure At A strain Rate of
6.67X10 The Material Was Rolled To A
Rolling straln Oof 3.36 At 300°C With 30
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62




STRESS (PSI*1000)

14.0 16.0

2.0
.

{

8.0

LEGEND
300C TEST
0 300C TEST
_o _3Y0C TEST
~ 4000 TEST
~_ 430C TEST

o H00C TEST |

..................................................................

Figure B-9.

b e
0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
STRAIN (IN/IN)
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Minutes Reheating Interval between The Rolling
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Figure B-10. True Stress vs. True Strain As Function Of

Test Teggergiure At A strain Rate of

6.67X10 Ss™%. The Material Was Rolled To A
Rolling Strain Of 2.60 At 300°C With 30
Minutes Reheating Interval between The Rolli
Passes, In The Direction Parallel To The
Ooriginal Plate Longitudinal Direction At
Higher Rolling Speed.
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Figure B-11. True Stress vs. True Strain As Function Of

Toct Teggergiure At A strain Rate of

6.67X10 S *. The Material Was Rolled To A
Rolling Strain Of 2.60 At 300°C With 30
Minutes Reheating Interval between The Rolling
Passes, In The Direction Parallel To The
Original Plate Longitudinal Direction At

Higher Rolling Speed.
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Higher Rolling Speed.

True Stress vs.
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Rolling Strain Of 2.60 At 300 °C With 30
Minutes Reheating Interval between The Rolling
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Higher Rolling Speed.
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